长跑,除了锻炼身体外还能磨练一个人的意志力,越是忍受不了的事情越是要坚持不懈,毫不放松!
减肥除了重塑自己的形体外同时也是很能磨练人意志力的事情。当饥肠辘辘的时候,兜里揣着足够的钱,望着丰盛可口的美食,你是否有足够的意志力来抗拒这种诱惑?
所以,长跑和减肥要贯穿日常生活,成为日常生活的一部分,习惯成自然!
I want to be a complete engineer - technical genius and sensitive humanist all in one!
长跑,除了锻炼身体外还能磨练一个人的意志力,越是忍受不了的事情越是要坚持不懈,毫不放松!
减肥除了重塑自己的形体外同时也是很能磨练人意志力的事情。当饥肠辘辘的时候,兜里揣着足够的钱,望着丰盛可口的美食,你是否有足够的意志力来抗拒这种诱惑?
所以,长跑和减肥要贯穿日常生活,成为日常生活的一部分,习惯成自然!
自旋锁在同一时刻只能被最多一个内核任务持有,所以一个时刻只有一个线程允许存在于临界区中。这点可以应用在多处理机器、或运行在单处理器上的抢占式内核中需要的锁定服务。
顺便介绍下信号量的概念,因为其和自旋锁的用法有颇多相似之处。
Linux中的信号量是一种睡眠锁。如果有一个任务试图获得一个已被持有的信号量时,信号量会将其推入等待队列,然后让其睡眠。这时处理器获得自由去执行其它代码。当持有信号量的进程将信号量释放后,在等待队列中的一个任务将被唤醒,从而便可以获得这个信号量。
自旋锁和信号量对比
在很多地方自旋锁和信号量可以选择任何一个使用,但也有一些地方只能选择某一种。下面对比一些两者的用法。
表1-1自旋锁和信号量对比
应用场合 | 信号量or自旋锁 |
低开销加锁(临界区执行时间较快) | 优先选择自旋锁 |
低开销加锁(临界区执行时间较长) | 优先选择信号量 |
临界区可能包含引起睡眠的代码 | 不能选自旋锁,可以选择信号量 |
临界区位于非进程上下文时,此时不能睡眠 | 优先选择自旋锁,即使选择信号量也只能用down_trylock非阻塞的方式 |
自旋锁与linux内核进程调度关系
以上表第3种情况(其它几种情况比较好理解)为例,如果临界区可能包含引起睡眠的代码则不能使用自旋锁,否则可能引起死锁。
那么为什么信号量保护的代码可以睡眠而自旋锁就不能呢?
先看下自旋锁的实现方法吧,自旋锁的基本形式如下:
spin_lock(&mr_lock);
//临界区
spin_unlock(&mr_lock);
跟踪一下spin_lock(&mr_lock)的实现
#define spin_lock(lock) _spin_lock(lock)
#define _spin_lock(lock) __LOCK(lock)
#define __LOCK(lock) \
do { preempt_disable(); __acquire(lock); (void)(lock); } while (0)
注意到“preempt_disable()”,这个调用的功能是“关抢占”(在spin_unlock中会重新开启抢 占功能)。从中可以看出,使用自旋锁保护的区域是工作在非抢占的状态;即使获取不到锁,在“自旋”状态也是禁止抢占的。了解到这,我想咱们应该能够理解为 何自旋锁保护的代码不能睡眠了。试想一下,如果在自旋锁保护的代码中间睡眠,此时发生进程调度,则可能另外一个进程会再次调用spinlock保护的这段 代码。而我们现在知道了即使在获取不到锁的“自旋”状态,也是禁止抢占的,而“自旋”又是动态的,不会再睡眠了,也就是说在这个处理器上不会再有进程调度 发生了,那么死锁自然就发生了。
咱们可以总结下自旋锁的特点:
● 单处理器非抢占内核下:自旋锁会在编译时被忽略;
● 单处理器抢占内核下:自旋锁仅仅当作一个设置内核抢占的开关;
● 多处理器下:此时才能完全发挥出自旋锁的作用,自旋锁在内核中主要用来防止多处理器中并发访问临界区,防止内核抢占造成的竞争。
linux抢占发生的时间
最后在了解下linux抢占发生的时间,抢占分为用户抢占和内核抢占。
用户抢占在以下情况下产生:
● 从系统调用返回用户空间
● 从中断处理程序返回用户空间
内核抢占会发生在:
● 当从中断处理程序返回内核空间的时候,且当时内核具有可抢占性;
● 当内核代码再一次具有可抢占性的时候。(如:spin_unlock时)
● 如果内核中的任务显式的调用schedule()
● 如果内核中的任务阻塞。
基本的进程调度就是发生在时钟中断后,并且发现进程的时间片已经使用完了,则发生进程抢占。通常我们会利用中断处理程序 返回内核空间的时候可以进行内核抢占这个特性来提高一些I/O操作的实时性,如:当I/O事件发生的是时候,对应的中断处理程序被激活,当它发现有进程在 等待这个I/O事件的时候,它会激活等待进程,并且设置当前正在执行进程的need_resched标志,这样在中断处理程序返回的时候,调度程序被激 活,原来在等待I/O事件的进程(很可能)获得执行权,从而保证了对I/O事件的相对快速响应(毫秒级)。可以看出,在I/O事件发生的时候,I/O事件 的处理进程会抢占当前进程,系统的响应速度与调度时间片的长度无关。
更详细的内容可以参考Robert Love所著的《Linux kernel Development》SE, 经典著作啊,很值得一看!
initrd 的英文含义是 boot loader initialized RAM disk,就是由 boot loader 初始化的内存盘。在 linux内核启动前, boot loader 会将存储介质中的 initrd 文件加载到内存,内核启动时会在访问真正的根文件系统前先访问该内存中的 initrd 文件系统。在 boot loader 配置了 initrd 的情况下,内核启动被分成了两个阶段,第一阶段先执行 initrd 文件系统中的"某个文件",完成加载驱动模块等任务,第二阶段才会执行真正的根文件系统中的 /sbin/init 进程。这里提到的"某个文件",Linux2.6 内核会同以前版本内核的不同,所以这里暂时使用了"某个文件"这个称呼,后面会详细讲到。第一阶段启动的目的是为第二阶段的启动扫清一切障爱,最主要的是 加载根文件系统存储介质的驱动模块。我们知道根文件系统可以存储在包括IDE、SCSI、USB在内的多种介质上,如果将这些设备的驱动都编译进内核,可 以想象内核会多么庞大、臃肿。
Initrd 的用途主要有以下四种:
1. linux 发行版的必备部件
linux 发行版必须适应各种不同的硬件架构,将所有的驱动编译进内核是不现实的,initrd 技术是解决该问题的关键技术。Linux 发行版在内核中只编译了基本的硬件驱动,在安装过程中通过检测系统硬件,生成包含安装系统硬件驱动的 initrd,无非是一种即可行又灵活的解决方案。
2. livecd 的必备部件
同 linux 发行版相比,livecd 可能会面对更加复杂的硬件环境,所以也必须使用 initrd。
3. 制作 Linux usb 启动盘必须使用 initrd
usb 设备是启动比较慢的设备,从驱动加载到设备真正可用大概需要几秒钟时间。如果将 usb 驱动编译进内核,内核通常不能成功访问 usb 设备中的文件系统。因为在内核访问 usb 设备时, usb 设备通常没有初始化完毕。所以常规的做法是,在 initrd 中加载 usb 驱动,然后休眠几秒中,等待 usb设备初始化完毕后再挂载 usb 设备中的文件系统。
4. 在 linuxrc 脚本中可以很方便地启用个性化 bootsplash。
为 了使读者清晰的了解Linux2.6内核initrd机制的变化,在重点介绍Linux2.6内核initrd之前,先对linux2.4内核的 initrd进行一个简单的介绍。Linux2.4内核的initrd的格式是文件系统镜像文件,本文将其称为image-initrd,以区别后面介绍 的linux2.6内核的cpio格式的initrd。 linux2.4内核对initrd的处理流程如下:
1. boot loader把内核以及/dev/initrd的内容加载到内存,/dev/initrd是由boot loader初始化的设备,存储着initrd。
2. 在内核初始化过程中,内核把 /dev/initrd 设备的内容解压缩并拷贝到 /dev/ram0 设备上。
3. 内核以可读写的方式把 /dev/ram0 设备挂载为原始的根文件系统。
4. 如果 /dev/ram0 被指定为真正的根文件系统,那么内核跳至最后一步正常启动。
5. 执行 initrd 上的 /linuxrc 文件,linuxrc 通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。
6. /linuxrc 执行完毕,真正的根文件系统被挂载。
7. 如果真正的根文件系统存在 /initrd 目录,那么 /dev/ram0 将从 / 移动到 /initrd。否则如果 /initrd 目录不存在, /dev/ram0 将被卸载。
8. 在真正的根文件系统上进行正常启动过程 ,执行 /sbin/init。 linux2.4 内核的 initrd 的执行是作为内核启动的一个中间阶段,也就是说 initrd 的 /linuxrc 执行以后,内核会继续执行初始化代码,我们后面会看到这是 linux2.4 内核同 2.6 内核的 initrd 处理流程的一个显著区别。
linux2.6 内核支持两种格式的 initrd,一种是前面第 3 部分介绍的 linux2.4 内核那种传统格式的文件系统镜像-image-initrd,它的制作方法同 Linux2.4 内核的 initrd 一样,其核心文件就是 /linuxrc。另外一种格式的 initrd 是 cpio 格式的,这种格式的 initrd 从 linux2.5 起开始引入,使用 cpio 工具生成,其核心文件不再是 /linuxrc,而是 /init,本文将这种 initrd 称为 cpio-initrd。尽管 linux2.6 内核对 cpio-initrd和 image-initrd 这两种格式的 initrd 均支持,但对其处理流程有着显著的区别,下面分别介绍 linux2.6 内核对这两种 initrd 的处理流程。
1. boot loader 把内核以及 initrd 文件加载到内存的特定位置。
2. 内核判断initrd的文件格式,如果是cpio格式。
3. 将initrd的内容释放到rootfs中。
4. 执行initrd中的/init文件,执行到这一点,内核的工作全部结束,完全交给/init文件处理。
1. boot loader把内核以及initrd文件加载到内存的特定位置。
2. 内核判断initrd的文件格式,如果不是cpio格式,将其作为image-initrd处理。
3. 内核将initrd的内容保存在rootfs下的/initrd.image文件中。
4. 内核将/initrd.image的内容读入/dev/ram0设备中,也就是读入了一个内存盘中。
5. 接着内核以可读写的方式把/dev/ram0设备挂载为原始的根文件系统。
6. .如果/dev/ram0被指定为真正的根文件系统,那么内核跳至最后一步正常启动。
7. 执行initrd上的/linuxrc文件,linuxrc通常是一个脚本文件,负责加载内核访问根文件系统必须的驱动, 以及加载根文件系统。
8. /linuxrc执行完毕,常规根文件系统被挂载
9. 如果常规根文件系统存在/initrd目录,那么/dev/ram0将从/移动到/initrd。否则如果/initrd目录不存在, /dev/ram0将被卸载。
10. 在常规根文件系统上进行正常启动过程 ,执行/sbin/init。
通 过上面的流程介绍可知,Linux2.6内核对image-initrd的处理流程同linux2.4内核相比并没有显著的变化, cpio-initrd的处理流程相比于image-initrd的处理流程却有很大的区别,流程非常简单,在后面的源代码分析中,读者更能体会到处理的 简捷。
4.cpio-initrd同image-initrd的区别与优势
没有找到正式的关于cpio-initrd同image-initrd对比的文献,根据笔者的使用体验以及内核代码的分析,总结出如下三方面的区别,这些区别也正是cpio-initrd的优势所在:
cpio-initrd的制作非常简单,通过两个命令就可以完成整个制作过程
#假设当前目录位于准备好的initrd文件系统的根目录下 |
而传统initrd的制作过程比较繁琐,需要如下六个步骤
#假设当前目录位于准备好的initrd文件系统的根目录下 |
本文不对上面命令的含义作细节的解释,因为本文主要介绍的是linux内核对initrd的处理,对上面命令不理解的读者可以参考相关文档。
通过上面initrd处理流程的介绍,cpio-initrd的处理流程显得格外简单,通过对比可知cpio-initrd的处理流程在如下两个方面得到了简化:
1. cpio-initrd并没有使用额外的ramdisk,而是将其内容输入到rootfs中,其实rootfs本身也是一个基于内存的文件系统。这样就省掉了ramdisk的挂载、卸载等步骤。
2. cpio-initrd启动完/init进程,内核的任务就结束了,剩下的工作完全交给/init处理;而对于image-initrd,内核在执行完 /linuxrc进程后,还要进行一些收尾工作,并且要负责执行真正的根文件系统的/sbin/init。通过图1可以更加清晰的看出处理流程的区别:
如 图1所示,cpio-initrd不再象image-initrd那样作为linux内核启动的一个中间步骤,而是作为内核启动的终点,内核将控制权交给 cpio-initrd的/init文件后,内核的任务就结束了,所以在/init文件中,我们可以做更多的工作,而不比担心同内核后续处理的衔接问题。 当然目前linux发行版的cpio-initrd的/init文件的内容还没有本质的改变,但是相信initrd职责的增加一定是一个趋势。
上 面简要介绍了Linux2.4内核和2.6内核的initrd的处理流程,为了使读者对于Linux2.6内核的initrd的处理有一个更加深入的认 识,下面将对Linuxe2.6内核初始化部分同initrd密切相关的代码给予一个比较细致的分析,为了讲述方便,进一步明确几个代码分析中使用的概 念:
rootfs: 一个基于内存的文件系统,是linux在初始化时加载的第一个文件系统,关于它的进一步介绍可以参考文献[4]。
initramfs: initramfs同本文的主题关系不是很大,但是代码中涉及到了initramfs,为了更好的理解代码,这里对其进行简单的介绍。Initramfs 是在 kernel 2.5中引入的技术,实际上它的含义就是:在内核镜像中附加一个cpio包,这个cpio包中包含了一个小型的文件系统,当内核启动时,内核将这个 cpio包解开,并且将其中包含的文件系统释放到rootfs中,内核中的一部分初始化代码会放到这个文件系统中,作为用户层进程来执行。这样带来的明显 的好处是精简了内核的初始化代码,而且使得内核的初始化过程更容易定制。Linux 2.6.12内核的 initramfs还没有什么实质性的东西,一个包含完整功能的initramfs的实现可能还需要一个缓慢的过程。对于initramfs的进一步了解 可以参考文献[1][2][3]。
cpio-initrd: 前面已经定义过,指linux2.6内核使用的cpio格式的initrd。
image-initrd: 前面已经定义过,专指传统的文件镜像格式的initrd。
realfs: 用户最终使用的真正的文件系统。
内 核的初始化代码位于 init/main.c 中的 static int init(void * unused)函数中。同initrd的处理相关部分函数调用层次如下图,笔者按照这个层次对每一个函数都给予了比较详细的分析,为了更好的说明,下面列 出的代码中删除了同本文主题不相关的部分:
init函数是内核所有初始化代码的入口,代码如下,其中只保留了同initrd相关部分的代码。
static int init(void * unused){ |
代码[1]:populate_rootfs函数负责加载initramfs和cpio-initrd,对于populate_rootfs函数的细节后面会讲到。
代码[2]:如果rootfs的根目录下中包含/init进程,则赋予execute_command,在init函数的末尾会被执行。否则执行prepare_namespace函数,initrd是在该函数中被加载的。
代码[3]:将控制台设置为标准输入,后续的两个sys_dup(0),则复制标准输入为标准输出和标准错误输出。
代 码[4]:如果rootfs中存在init进程,就将后续的处理工作交给该init进程。其实这段代码的含义是如果加载了cpio-initrd则交给 cpio-initrd中的/init处理,否则会执行realfs中的init。读者可能会问:如果加载了cpio-initrd, 那么realfs中的init进程不是没有机会运行了吗?确实,如果加载了cpio-initrd,那么内核就不负责执行realfs的init进程了, 而是将这个执行任务交给了cpio-initrd的init进程。解开fedora core4的initrd文件,会发现根目录的下的init文件是一个脚本,在该脚本的最后一行有这样一段代码:
……….. |
就是switchroot语句负责加载realfs,以及执行realfs的init进程。
对cpio-initrd的处理位于populate_rootfs函数中。
void __init populate_rootfs(void){ |
代码[1]:加载initramfs, initramfs位于地址__initramfs_start处,是内核在编译过程中生成的,initramfs的是作为内核的一部分而存在的,不是 boot loader加载的。前面提到了现在initramfs没有任何实质内容。
代码[2]:判断是否加载了initrd。无论哪种格式的initrd,都会被boot loader加载到地址initrd_start处。
代码[3]:判断加载的是不是cpio-initrd。实际上 unpack_to_rootfs有两个功能一个是释放cpio包,另一个就是判断是不是cpio包, 这是通过最后一个参数来区分的, 0:释放 1:查看。
代码[4]:如果是cpio-initrd则将其内容释放出来到rootfs中。
代码[5]:如果不是cpio-initrd,则认为是一个image-initrd,将其内容保存到/initrd.image中。在后面的image-initrd的处理代码中会读取/initrd.image。
对image-initrd的处理 在prepare_namespace函数里,包含了对image-initrd进行处理的代码,相关代码如下:
void __init prepare_namespace(void){ |
代码[1]:执行initrd_load函数,将initrd载入,如果载入成功的话initrd_load函数会将realfs的根设置为当前目录。
代码[2]:将当前目录即realfs的根mount为Linux VFS的根。initrd_load函数执行完后,将真正的文件系统的根设置为当前目录。
initrd_load函数负责载入image-initrd,代码如下:
int __init initrd_load(void) |
代码[1]:如果加载initrd则建立一个ram0设备 /dev/ram。
代 码[2]:/initrd.image文件保存的就是image-initrd,rd_load_image函数执行具体的加载操作,将image- nitrd的文件内容释放到ram0里。判断ROOT_DEV!=Root_RAM0的含义是,如果你在grub或者lilo里配置了 root=/dev/ram0 ,则实际上真正的根设备就是initrd了,所以就不把它作为initrd处理 ,而是作为realfs处理。
handle_initrd()函数负责对initrd进行具体的处理,代码如下:
static void __init handle_initrd(void){ |
handle_initrd函数的主要功能是执行initrd的linuxrc文件,并且将realfs的根目录设置为当前目录。
代码[1]:real_root_dev,是一个全局变量保存的是realfs的设备号。
代码[2]:调用mount_block_root函数将initrd文件系统挂载到了VFS的/root下。
代码[3]:提取rootfs的根的文件描述符并将其保存到root_fd。它的作用就是为了在chroot到initrd的文件系统,处理完initrd之后要,还能够返回rootfs。返回的代码参考代码[7]。
代码[4]:chroot进入initrd的文件系统。前面initrd已挂载到了rootfs的/root目录。
代码[5]:执行initrd的linuxrc文件,等待其结束。
代码[6]:initrd处理完之后,重新chroot进入rootfs。
代码[7]:如果real_root_dev在 linuxrc中重新设成Root_RAM0,则initrd就是最终的realfs了,改变当前目录到initrd中,不作后续处理直接返回。
代码[8]:在linuxrc执行完后,realfs设备已经确定,调用mount_root函数将realfs挂载到root_fs的 /root目录下,并将当前目录设置为/root。
代码[9]:后面的代码主要是做一些收尾的工作,将initrd的内存盘释放。
到此代码分析完毕。
通过本文前半部分对cpio-initrd和imag-initrd的阐述与对比以及后半部分的代码分析,我相信读者对Linux 2.6内核的initrd技术有了一个较为全面的了解。在本文的最后,给出两点最重要的结论:
1. 尽管Linux2.6既支持cpio-initrd,也支持image-initrd,但是cpio-initrd有着更大的优势,在使用中我们应该优先考虑使用cpio格式的initrd。
2. cpio-initrd相对于image-initrd承担了更多的初始化责任,这种变化也可以看作是内核代码的用户层化的一种体现,我们在其它的诸如 FUSE等项目中也看到了将内核功能扩展到用户层实现的尝试。精简内核代码,将部分功能移植到用户层必然是linux内核发展的一个趋势。
come from:http://www.ibm.com/developerworks/cn/linux/l-k26initrd/
(1)Rplace all CFLAGS with EXTRA_CFLAGS in the Makefile.
(2)Using the KBUILD_NOPEDANTIC arg.
因此添加新的驱动代码时必须要修改的文档有两种Kconfig和Makefile。
要想知道怎么修改这两种文档,就要知道两种文档的语法结构。
Kconfig 语法
linux2.6.x/Documentation/kbuild/kconfig-language.txt
每个菜单都有一个关键字标识,最常见的就是config。
语法:
config
symbol是个新的标记的菜单项,options是在这个新的菜单项下的属性和选项
其中options部分有:
1、类型定义:
例如config HELLO_MODULE
bool "hello test module"
bool类型的只能选中或不选中,tristate类型的菜单项多了编译成内核模块的选项,假如选择编译成内核模块,则会在.config中生成一个 CONFIG_HELLO_MODULE=m的配置,假如选择内建,就是直接编译成内核影响,就会在.config中生成一个 CONFIG_HELLO_MODULE=y的配置.
2、依赖型定义depends on或requires
指此菜单的出现和否依赖于另一个定义
config HELLO_MODULE
bool "hello test module"
depends on ARCH_PXA
这个例子表明HELLO_MODULE这个菜单项只对XScale处理器有效。
3、帮助性定义
只是增加帮助用关键字help或---help---
内核Makefile
Makefile
.config
arch/$(ARCH)/Makefile 和体系结构相关的Makefile
s/ Makefile.*
kbuild Makefile
顶层的Makefile文档读取 .config文档的内容,并总体上负责build内核和模块。Arch Makefile则提供补充体系结构相关的信息。 s目录下的Makefile文档包含了任何用来根据kbuild Makefile 构建内核所需的定义和规则。(其中.config的内容是在make gconfig的时候,通过Kconfig文档配置的结果)。
举个例子:
第三:修改该目录下makefile文档。
1. 獲得 toolchains 從 http://www.codesourcery.com/gnu_toolchains/arm/portal/subscription?@template=lite (選擇 ARM EABI 和 IA32 GNU/Linux).
2. 獲得內核源代碼從 http://code.google.com/p/android/downloads/list 。
3.部署 toolcains 和 內核源碼進入內核源碼樹。
$ mkdir -p android
$ cd android
$ tar xjvf ../arm-2007q3-51-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
$ tar xzvf ../linux-2.6.23-android-m3-rc20.tar.gz
$ cd kernel
4. 獲得 config.gz 來自正在運行的emulator 通過下面你的方法。
$ adb pull /proc/config.gz .
5. 解壓縮 config.gz 并重命名為 .config
$ gunzip config.gz
$ mv config .config
6. 指定 CROSS_COMPILE (譯注:交叉編譯器)在 Makefile 中。
CROSS_COMPILE=../arm-2007q3/bin/arm-none-linux-gnueabi-
7. 评论指出 LDFLAGS_BUILD_ID 在相同的 Makefile。
The LDFLAGS_BUILD_ID enables --build-id 選擇 ld 如果可以得到。
The --build-id 選擇相對較新的。
目前的模擬器似乎不支持內核鏈表這個選項。
見 http://fedoraproject.org/wiki/Releases/FeatureBuildId 如果你有興趣這些詳細的選項。
#LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,\
$(call ld-option, -Wl$(comma)--build-id,))
8. Make the kernel(制作內核)
$ make
9. 檢查 zImage 是被創建的和大小相近的kernel-qemu 在 Andorid SDK 中。
$ ls -l arch/arm/boot/zImage
-rwxrwxr-x 1 motz motz 1234712 2007-12-01 18:06 arch/arm/boot/zImage
$ ls -l $SDK/tools/lib/images/kernel-qemu
-rwxrwxr-x 1 motz motz 1245836 2007-11-12 5:59 ...sdk/tools/lib/images/kernel-qemu
10. 運行 emulator 被創建的內核
$ emulator -kernel arch/arm/boot/zImage
前一段时间在youtube看到了一段使用Linux文本字符流来播放电影,网址
http://www.youtube.com/watch?v=ji0A3kOAc9U,感觉非常有意思,拿出来大家一起娱乐,也巩固一下内核编译和驱动的知识。
首先,确保内核支持VESA(视频电子标准)驱动。并保证内核选择了正确的声卡驱动程序。
以我的机器为例,我的是普通VGA显卡(主板集成,8M显存),声卡是Intel AC97,则在内核中选择以下
必须要支持以下功能:
(1)VESA模式的支持
Device Drivers ---> Graphics support --->
[*] VESA VGA graphics support
(2)相关音频接口的支持,例如:Sequencer support(MIDI接口的支持)
Device Drivers ---> Sound ---> Advanced Linux Sound Architecture --->
[*] OSS PCM (digital audio) API - Include plugin system
......
(3)声卡驱动
Device Drivers ---> Sound ---> Advanced Linux Sound Architecture ---> PCI devices --->
确保内核支持以上功能后,就可以安装软件了。下面是安装软件的步骤:
1. 下载软件,全部存储到/mnt/source目录下
mkdir -p /mnt/source
cd /mnt/source
wget http://prdownloads.sourceforge.net/aa-project/aalib-1.4rc4.tar.gz
wget http://www4.mplayerhq.hu/MPlayer/releases/MPlayer-1.0rc1.tar.bz2
wget http://www4.mplayerhq.hu/MPlayer/releases/codecs/essential-20061022.tar.bz2
wget http://downloads.sourceforge.net/lrmi/lrmi-0.10.tar.gz?modtime=1133743627&big_mirror=0
2. 准备vesautils(自持VESA需要)
svn checkout svn://svn.mplayerhq.hu/vesautils/trunk vesautils
3. 准备解码器库文件
tar essential-20061022.tar.bz2
mkdir /usr/local/lib/codecs
cp essential-20061022/* /usr/local/lib/codecs
4. 修改/etc/ld.so.conf,添加下面的行
/usr/local/lib
5. 编译lrmi
cd /mnt/source
tar -zxvf lrmi-0.10.tar.gz
cd lrmi-0.10
make
make install
6. 编译vesautils
cd /mnt/source/vesautils/libvbe/
make
make install
7. 编译软件aalib
tar -zxvf aalib-1.4rc4.tar.gz
cd aalib-1.4.0
./configure
make
make install
8. 编译Mplayer
tar -jxvf MPlayer-1.0rc1.tar.bz2
cd MPlayer-1.0rc1
编辑configure文件,找到4195行,即:
4195 _ld_aa=`aalib-config --libs | cut -d " " -f 2,5,6`
在该行的后面添加下面两行:
else
_ld_aa="-laa"
./configure --with-codecsdir=/usr/local/lib/codecs --with-win32libdir=/usr/local/lib/codecs
--with-reallibdir=/usr/local/lib/codecs --enable-aa --enable-vesa
make
make install
9. 测试
下载就可以在Text Console下播放电影了。
mplayer -vo vesa 电影文件名
要测试Videos in ASCII Art
mplayer -vo aa 电影文件名
10. 如果VESA播放时分辨率不高,修改/etc/grub.conf文件,在kernel参数后添加选项vga=791。
例如:
kernel /vmlinuz-2.6.18 ro root=/dev/VolGroup00/LogVol00 rhgb quiet vga=791
The asmlinkage tag is one other thing that we should observe aboutthis simple function.
This is a #define for some gcc magic that tellsthe compiler that the function should not
expect to find any of itsarguments in registers (a common optimization), but only on
theCPU’s stack. Recall our earlier assertion that system_call consumesits first argument,
the system call number, and allows up to four morearguments that are passed along to the
real system call. system_callachieves this feat simply by leaving its other arguments (which
werepassed to it in registers) on the stack. All system calls are markedwith the asmlinkage tag,
so they all look to the stack for arguments.Of course, in sys_ni_syscall’s case, this doesn’t make
any difference,because sys_ni_syscall doesn’t take any arguments, but it’s an issuefor most
other system calls. And, because you’ll be seeingasmlinkage in front of many other functions,
I thought you shouldknow what it was about.
在kernel2.6.26 include/linux/linkage.h里面定义如下:
#ifndef asmlinkage_protect
# define asmlinkage_protect(n, ret, args...) do { } while (0)
#endif
CPP_ASMLINKAGE的定义为:
#ifdef __cplusplus
#define CPP_ASMLINKAGE extern “C”
#else
#define CPP_ASMLINKAGE
#endif
而在include/asm-i386/linkage.h里则有更明确的定义:
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))
__attribute__是GCC的C语言扩展语法。regparm(0)表示不从寄存器中传递参数。
另外,如果是__attribute__((regparm(3))),那么调用函数的时候参数不是通过栈传递,而是直接放到寄存器里,被调用函数直接从寄存器取参数。本文以linux-2.6.14内核在S3C2410平台上运行为例,讲解内核的解压过程。内核编译完成后会生成zImage内核镜像文件。关于bootloader加载zImage到内核,并且跳转到zImage开始地址运行zImage的过 程,相信大家都很容易理解。但对于zImage是如何解压的过程,就不是那么好理解了。本文将结合部分关键代码,讲解zImage的解压过程。
先看看zImage的组成吧。在内核编译完成后会在arch/arm/boot/下生成zImage。
在arch/armboot/Makefile中:
$(obj)/zImage: $(obj)/compressed/vmlinux FORCE
$(call if_changed,objcopy)
由此可见,zImage的是elf格式的arch/arm/boot/compressed/vmlinux二进制化得到的
在arch/armboot/compressed/Makefile中:
$(obj)/vmlinux: $(obj)/vmlinux.lds $(obj)/$(HEAD) $(obj)/piggy.o \
$(addprefix $(obj)/, $(OBJS)) FORCE
$(call if_changed,ld)
$(obj)/piggy.gz: $(obj)/../Image FORCE
$(call if_changed,gzip)
$(obj)/piggy.o: $(obj)/piggy.gz FORCE
其中Image是由内核顶层目录下的vmlinux二进制化后得到的。注意:arch/arm/boot/compressed/vmlinux是位置无关的,这个有助于理解后面的代码。,链接选项中有个 –fpic参数:
EXTRA_CFLAGS := -fpic
总结一下zImage的组成,它是由一个压缩后的内核piggy.o,连接上一段初始化及解压功能的代码(head.o misc.o),组成的。
下面就要看内核的启动了,那么内核是从什么地方开始运行的呢?这个当然要看lds文件啦。zImage的生成经历了两次大的链接过程:一次是顶层 vmlinux的生成,由arch/arm/boot/vmlinux.lds(这个lds文件是由arch/arm/kernel /vmlinux.lds.S生成的)决定;另一次是arch/arm/boot/compressed/vmlinux的生成,是由arch/arm /boot/compressed/vmlinux.lds(这个lds文件是由arch/arm/boot/compressed /vmlinux.lds.in生成的)决定。zImage的入口点应该由arch/arm/boot/compressed/vmlinux.lds决 定。从中可以看出入口点为‘_start’
OUTPUT_ARCH(arm)
ENTRY(_start)
SECTIONS
{
. = 0;
_text = .;
.text : {
_start = .;
*(.start)
*(.text)
……
}
在arch/arm/boot/compressed/head.S中找到入口点。
看看head.S会做些什么样的工作:
• 对于各种Arm CPU的DEBUG输出设定,通过定义宏来统一操作;
•设置kernel开始和结束地址,保存architecture ID;
• 如果在ARM2以上的CPU中,用的是普通用户模式,则升到超级用户模式,然后关中断
• 分析LC0结构delta offset,判断是否需要重载内核地址(r0存入偏移量,判断r0是否为零)。
•需要重载内核地址,将r0的偏移量加到BSS region和GOT table中的每一项。
对于位置无关的代码,程序是通过GOT表访问全局数据目标的,也就是说GOT表中中记录的是全局数据目标的绝对地址,所以其中的每一项也需要重载。
• 清空bss堆栈空间r2-r3
•建立C程序运行需要的缓存
•这时r2是缓存的结束地址,r4是kernel的最后执行地址,r5是kernel境象文件的开始地址
•用文件misc.c的函数decompress_kernel(),解压内核于缓存结束的地方(r2地址之后)。
可能大家看了上面的文字描述还是不清楚解压的动态过程。还是先用图表的方式描述下代码的搬运解压过程。然后再针对中间的一些关键过程阐述。
假定zImage在内存中的初始地址为0x30008000(这个地址由bootloader决定,位置不固定)
1、初始状态
.text | 0x30008000开始,包含piggydata段(即压缩的内核段) |
. got | ? |
. data | ? |
.bss | ? |
.stack | 4K大小 |
2、head.S调用misc.c中的decompress_kernel刚解压完内核后
.text | 0x30008000开始,包含piggydata段(即压缩的内核段) |
. got | ? |
. data | ? |
.bss | ? |
.stack | 4K大小 |
解压函数所需缓冲区 | 64K大小 |
解压后的内核代码 | 小于4M |
3、此时会将head.S中的部分代码重定位
.text | 0x30008000开始,包含piggydata段(即压缩的内核段) |
. got | ? |
. data | ? |
.bss | ? |
.stack | 4K大小 |
解压函数所需缓冲区 | 64K大小 |
解压后的内核代码 | 小于4M |
head.S中的部分重定位代码代码 | reloc_start至reloc_end |
4、跳转到重定位后的reloc_start处,由reloc_start至reloc_end的代码复制解压后的内核代码到0x30008000处,并调用call_kernel跳转到0x30008000处执行。
解压后的内核 | 0x30008000开始 |
在通过head.S了解了动态过程后,大家可能会有几个问题:
问题1:zImage是如何知道自己最后的运行地址是0x30008000的?
问题2:调用decompress_kernel函数时,其4个参数是什么值及物理含义?
问题3:解压函数是如何确定代码中压缩内核位置的?
先回答第1个问题
这个地址的确定和Makefile和链接脚本有关,在arch/arm/Makefile文件中的
textaddr-y := 0xC0008000 这个是内核启动的虚拟地址
TEXTADDR := $(textaddr-y)
在arch/arm/mach-s3c2410/Makefile.boot中
zreladdr-y := 0x30008000 这个就是zImage的运行地址了
在arch/arm/boot/Makefile文件中
ZRELADDR := $(zreladdr-y)
在arch/arm/boot/compressed/Makefile文件中
zreladdr=$(ZRELADDR)
在arch/arm/boot/compressed/Makefile中有
.word zreladdr @ r4
内核就是用这种方式让代码知道最终运行的位置的
接下来再回答第2个问题
decompress_kernel(ulg output_start, ulg free_mem_ptr_p, ulg free_mem_ptr_end_p,
int arch_id)
l output_start:指解压后内核输出的起始位置,此时它的值参考上面的图表,紧接在解压缓冲区后;
l free_mem_ptr_p:解压函数需要的内存缓冲开始地址;
l ulg free_mem_ptr_end_p:解压函数需要的内存缓冲结束地址,共64K;
l arch_id :architecture ID,对于SMDK2410这个值为193;
最后回答第3个问题
首先看看piggy.o是如何生成的,在arch/arm/boot/compressed/Makefie中
$(obj)/piggy.o: $(obj)/piggy.gz FORCE
Piggy.o是由piggy.S生成的,咱们看看piggy.S的内容:
.section .piggydata,#alloc
.globl input_data
input_data:
.incbin "arch/arm/boot/compressed/piggy.gz"
.globl input_data_end
input_data_end:
再看看misc.c中decompress_kernel函数吧,它将调用gunzip()解压内核。gunzip()在lib/inflate.c中定义,它将调用NEXTBYTE(),进而调用get_byte()来获取压缩内核代码。
在misc.c中
#define get_byte() (inptr <>
查看fill_inbuf函数
int fill_inbuf(void)
{
if (insize != 0)
error("ran out of input data");
inbuf = input_data;
insize = &input_data_end[0] - &input_data[0];
inptr = 1;
return inbuf[0];
}
发现什么没?这里的input_data不正是piggy.S里的input_data吗?这个时候应该明白内核是怎样确定piggy.gz在zImage中的位置了吧。
在Linux2.6内核中,devfs被认为是过时的方法,并最终被抛弃,udev取代了它。Devfs的一个很重要的特点就是可以动态创建设备结点。那我们现在如何通过udev和sys文件系统动态创建设备结点呢?
下面通过一个实例,说明udev、sys动态创建设备结点的方法。注意代码中红色的部分是为了实现动态创建设备结点添加的。
#include
#include /
#include /
#include /
#include /
MODULE_LICENSE ("GPL");
int hello_minor = 0;
int number_of_devices = 1;
char data[50]="foobar not equal to barfoo";
struct cdev cdev;
dev_t dev = 0;
static int hello_open (struct inode *inode, struct file *file)
{
printk (KERN_INFO "Hey! device opened\n");
return 0;
}
static int hello_release (struct inode *inode, struct file *file)
{
printk (KERN_INFO "Hmmm... device closed\n");
return 0;
}
ssize_t hello_read (struct file *filp, char *buff, size_t count, loff_t *offp)
{
ssize_t result = 0;
if (copy_to_user (buff, data, sizeof(data)-1))
result = -EFAULT;
else
printk (KERN_INFO "wrote %d bytes\n", count);
}
ssize_t hello_write (struct file *filp, const char *buf, size_t count, loff_t *f_pos)
{
ssize_t ret = 0;
printk (KERN_INFO "Writing %d bytes\n", count);
if (count>127)
if (count<0)>
{
int error, devno = MKDEV (hello_major, hello_minor);
cdev_init (&cdev, &hello_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &hello_fops;
error = cdev_add (&cdev, devno , 1);
if (error)
printk (KERN_NOTICE "Error %d adding char_reg_setup_cdev", error);
/* creating your own class */
my_class =class_create(THIS_MODULE, "farsight_class");
if(IS_ERR(my_class))
printk("Err: failed in creating class.\n");
return ;
}
/* register your own device in sysfs, and this will cause udevd to create corresponding device node */
class_device_create(my_class,NULL, devno, NULL,"farsight_dev");
// device_create(my_class,NULL, devno,"farsight_dev");
}
{
int result;
dev = MKDEV (hello_major, hello_minor);
result = register_chrdev_region (dev, number_of_devices, "test");
if (result<0)>